Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Imino Diels-Alder adducts. XII. Two pyrano[3,2-c]quinolines

K. Ravikumar, ${ }^{\text {a }}$ B. Sridhar, ${ }^{\text {a M. Mahesh }}{ }^{\text {b }}$ and V. V. Narayana Reddy ${ }^{\text {b }}$
${ }^{\text {a Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, }}$ Hyderabad 500 007, India, and ${ }^{\mathbf{b}}$ Organic Chemistry Division II, Indian Institute of Chemical Technology, Hyderabad 500 007, India
Correspondence e-mail: ravikumar_iict@yahoo.co.in

Received 20 July 2006
Accepted 28 July 2006
Online 23 August 2006

The crystal structures of pyranoquinolines 9-fluoro-5-phenyl-3,4,4a,5,6,10b-hexahydro- 2 H -pyrano[3,2-c]quinoline, $\mathrm{C}_{18} \mathrm{H}_{18}{ }^{-}$ FNO, and 9-methyl-5-phenyl-3,4,4a,5,6,10b-hexahydro-2 H -pyrano[3,2-c]quinoline, $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$, are isomorphous. In both structures, the pyran ring is exo to the six-membered N heterocyclic ring formed in the cycloaddition step. The torsion angles across the phenyl linkage for the two structures are -91.2 (1) and $-88.3(2)^{\circ}$. The striking feature in both crystal packings is that they do not contain the expected conventional hydrogen bonds, in spite of the presence of good hydrogenbonding functionalities. Possible $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are, however, observed.

Comment

Pyranoquinoline systems are of interest because they constitute the parent ring structure of pyranoquinoline alkaloids, such as khaplofoline, simulenoline and zanthodiaoline. A range of biological activities have been reported for pyranoquinolines and their derivatives (Yamada et al., 1992; Nesterova et al., 1995), and these compounds are used as building blocks for the synthesis of various bridgehead N heterocycles (Faber et al., 1984). Pyranoquinolines possess a diverse array of structural patterns in linear or angular forms, which provide to the organic chemist a challenging field for investigations of their structures and accomplishment of their syntheses. Imino Diels-Alder reactions catalyzed by Lewis acids are a powerful and efficient methodology for the construction of nitrogen-containing heterocyclic compounds. Recently, the synthesis of disubstituted pyrano- and furoquinolines by the application of imino Diels-Alder reactions between N-benzylideneanilines as dienes and 3,4-dihydropyran or 2,3-dihydrofuran as dienophiles, using ZrCl_{4} as a catalyst, have been reported (Mahesh et al., 2004). We have been investigating how the formation of endolexo isomers via Diels-Alder cycloadditions depends on the relative orienta-
tion of the diene and the dienophile. In the course of these studies, the crystal structures of the title compounds, ($\mathrm{I} a$) and (Ib), have been determined.

($\mathrm{I}(\mathrm{c}) R=\mathrm{F}$
(Ib) $R=\mathrm{Me}$
Compounds ($\mathrm{I} a$) and ($\mathrm{I} b$) have isomorphous crystal structures (Figs. 1 and 2), despite one having F (electron withdrawing) and the other having CH_{3} (electron donating) substituents; the difference in volume is also significant ($9.6 \AA^{3}$ for F and $23.5 \AA^{3}$ for CH_{3}; Kitaigorodsky, 1973; Bertault et al., 1998). The geometries of the molecules are very similar; differences ranging from 1.7 to 4.9° in bond angles involving atom C9 (Tables 1 and 2) may be attributed to the nature of the substituent $\left(\mathrm{F}\right.$ or $\left.\mathrm{CH}_{3}\right)$. The $\mathrm{C}-\mathrm{F}$ bond distance in $(\mathrm{I} a)$ [1.3691 (15) A $]$ agrees well with the mean value for $C-F$ distances for monofluoroarenes tabulated by Allen et al. (1987) [1.363 (8) Å].

The structures reveal that the dihydropyran ring is attached to the central N -heterocyclic ring in an exo (trans) fashion $\left[\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 12-\mathrm{O} 1=178.2(1)^{\circ}\right.$ for $(\mathrm{I} a)$ and $179.6(1)^{\circ}$ for $(\mathrm{I} b)]$. The $\mathrm{H} 4-\mathrm{C} 4-\mathrm{C} 12-\mathrm{H} 12$ torsion angle of 51.3° in ($\left.\mathrm{I} a\right)$ and 52.6° in ($\mathrm{I} b$) indicates that the junction between the pyran and quinoline rings is cis. Similarly, the orientation of atoms H 5 and H 4 , defined by the $\mathrm{H} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$ torsion angle

Figure 1
A perspective view of the molecule of ($\mathrm{I} a$). Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as small circles of arbitrary radii.
$\left[-62.9^{\circ}\right.$ in ($\mathrm{I} a$) and -61.0° in ($\left.\mathrm{I} b\right)$] is also cis. This orientation facilitates the pyran and the phenyl rings being on the same side of the quinoline ring $\left[\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 13=-63.4(1)^{\circ}\right.$ in $(\mathrm{I} a)$ and $-61.0(2)^{\circ}$ in ($\left.\left.\mathrm{I} b\right)\right]$. This configuration is in accordance with the coupling constant $J=5.2 \mathrm{~Hz}$ observed between atoms H 4 and H 5 for compounds ($\mathrm{I} a$) and ($\mathrm{I} b$).

In both structures, the fusion strain exerted during the quinoline ring formation in the Diels-Alder process can be seen from the twist about the C5 $\cdots \mathrm{C} 11$ vector [C5-C4$\mathrm{C} 12-\mathrm{C} 11=51.3(1)^{\circ}$ in ($\left.\mathrm{I} a\right)$ and $52.4(2)^{\circ}$ in ($\left.\mathrm{I} b\right) ; \mathrm{C} 5-\mathrm{N} 1-$ $\mathrm{C} 6-\mathrm{C} 11=-20.1(2)^{\circ}$ in $(\mathrm{I} a)$ and $-18.7(2)^{\circ}$ in ($\left.\left.\mathrm{I} b\right)\right]$ The coordination of the quinoline N atom is significantly pyramidal, the sum of the angles at N being 347.6 (2) ${ }^{\circ}$ in ($\left.\mathrm{I} a\right)$ and 349.2 (2) ${ }^{\circ}$ in ($\mathrm{I} b$). The appropriate puckering description for the N -heterocycle ring in the quinoline ring system is halfchair in both structures, with asymmetry parameters (Nardelli, 1983) $\Delta C_{2}(\mathrm{C} 5-\mathrm{C} 4)$ of 0.024 (1) in ($\left.\mathrm{I} a\right)$ and $0.039(1)$ in ($\left.\mathrm{I} b\right)$.

The pyran rings in both structures are oriented almost perpendicular to the quinoline ring systems. Atom O1 is displaced above the $\mathrm{N} 1 / \mathrm{C} 6 / \mathrm{C} 11 / \mathrm{C} 12$ least-squares plane by 0.686 (1) \AA in (Ia) and 0.651 (1) \AA in (Ib). The conformation of the pyran ring in both structures is a chair, as expected, with atoms $\mathrm{C} 1, \mathrm{C} 3, \mathrm{C} 4$ and O 1 defining the plane, atom C 2 being displaced by $0.660(2) \AA$ in (Ia) and $0.661(2) \AA$ in (Ib), and atom C 12 being displaced by $-0.614(1) \AA$ in (Ia) and -0.623 (2) \AA in ($\mathrm{I} b$).

The phenyl ring substituted at atom C5 in both compounds is planar and is rotated from the central N -heterocyclic ring about the $\mathrm{C} 5-\mathrm{C} 13$ bond by $-91.2(1)^{\circ}$ in ($\left.\mathrm{I} a\right)$ and $-88.3(2)^{\circ}$ in ($\mathrm{I} b$), so as to avoid short non-bonded interactions between the atoms of this ring and the atoms of the N -heterocycle $[e . g$. $\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{H} 18=2.70 \AA$ in ($\mathrm{I} a$) and $2.62 \AA$ in ($\mathrm{I} b$)]

A striking feature is that the structures of ($\mathrm{I} a$) and ($\mathrm{I} b$) do not contain conventional hydrogen bonds, although in prin-

Figure 2
A perspective view of the molecule of ($\mathrm{I} b$). Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as small circles of arbitrary radii.

Figure 3
The crystal packing of ($\mathrm{I} a$), showing the formation of centrosymmetric dimers through $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen-bonding interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
ciple hydrogen bonds could be formed. Recently, Bhatt \& Desiraju (2006) have reported a similar situation in the crystal structure of desloratadine, where the NH group is not hydrogen bonded in a conventional sense, although two acceptors are available. A similar situation has also been noted in the crystal structures of alloxan (Beyer et al., 2001; Coombes et al., 1997), an oxalic acid-phthalocyanine complex (Liu et al., 2002), and furo- and pyranoquinolines (Ravikumar et al., 2004, 2005). The phenyl ring is the basis of a large volume of experimental material on $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds (Desiraju \& Steiner, 1999). In both compounds, geometry calculations show a significant $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction involving $\mathrm{C} 12-\mathrm{H} 12$ and the centroid (Cg1) of the C6-C11 aromatic ring of an inversion-related molecule (Table 3). This interaction for ($\mathrm{I} a$) is shown in Fig. 3; that for ($\mathrm{I} b$) is similar.

Experimental

To a solution of the appropriate N-benzylideneaniline (5.5 mmol) in dichloromethane (5 ml) at room temperature were added ZrCl_{4} ($10 \mathrm{~mol} \%$) and 3,4-dihydropyran (5.5 mmol) and the mixture stirred for 90 min . The completed reaction was quenched with water and the crude product was purified by column chromatography using 2% ethyl acetate and hexane to yield the title compounds. Crystals suitable for X-ray study were obtained by recrystallization from a mixture of methanol and water (3:1) in both cases.

Compound (Ia)

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FNO}$
$V=718.11(14) \AA^{3}$
$M_{r}=283.33$
$Z=2$
Triclinic, $P \overline{1}$
$a=8.3005$ (9) \AA
$b=9.6401$ (11) \AA
$c=10.0400$ (11) \AA
$\alpha=66.154$ (2) ${ }^{\circ}$
$\beta=79.666$ (2) ${ }^{\circ}$
$\gamma=79.880(2)^{\circ}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scan
6884 measured reflections
$D_{x}=1.310 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colorless
$0.20 \times 0.15 \times 0.10 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.113 ; S=1.08$
2504 reflections
194 parameters
H atoms: see below

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0509 P)^{2}\right. \\
+0.2075] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.20 \mathrm{e}^{-3}
\end{gathered}
$$

$S=1.05$
2615 reflections
195 parameters
H atoms treated by a mixture of independent and constrained refinement

The H atom attached to the quinoline N atom was located in a difference density map and refined isotropically. All other H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C-H distances of 0.93-0.98 \AA, and with $U_{\text {iso }}(\mathrm{H})$ values of $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for the other H atoms.

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank Dr J. S. Yadav, Director of IICT, for his kind encouragement and support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG3027). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bertault, M., Even, J. \& Toupet, L. (1998). Acta Cryst. C54, 1028-1030.
Beyer, T., Lewis, T. \& Price, S. L. (2001). CrystEngComm, 3, 178-213.
Bhatt, P. M. \& Desiraju, G. R. (2006). Acta Cryst. C62, o362-o363.
Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
Coombes, D. S., Nagi, G. K. \& Price, S. L. (1997). Chem. Phys. Lett. 265, 532537.

Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 130-164. Oxford University Press.
Faber, K., Stueckler, H. \& Kappee, T. (1984). J. Heterocycl. Chem. 21, 11771181.

Kitaigorodsky, A. I. (1973). In Molecular Crystals and Molecules, edited by E. M. Loebl. New York/London: Academic Press.

Liu, W., Lee, C. H., Li, H.-W., Lam, C.-K., Wang, J., Mak, T. C. W. \& Ng, D. K. P. (2002). Chem. Commun. pp. 628-629.

Mahesh, M., Venkateswar Reddy, Ch., Srinivasa Reddy, K., Raju, P. V. K. \& Narayana Reddy, V. V. (2004). Synth. Commun. 34, 4089-4104.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nesterova, I., Alekseeva, L. M., Andreeva, L. M., Andreeva, N. I., Colovira, S. M. \& Granic, V. G. (1995). Khim. Farm. Zh. 29, 31-34.

Ravikumar, K., Mahesh, M. \& Narayana Reddy, V. V. (2004). Acta Cryst. C60, o887-o889.
Ravikumar, K., Sridhar, B., Mahesh, M. \& Narayana Reddy, V. V. (2005). Acta Cryst. C61, o267-o269.
Sheldrick, G. M. (1990). SHELXTL/PC. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yamada, N., Kadowaki, S., Takashi, K. \& Umezu, K. (1992). Biochem. Pharmacol. 44, 1211-1215.

